

Is Blockchain the Savior of the Media Industry?

ERIC DIEHL

VP, Security and Media Technologies

Agenda

- Blockchain 101
- Mythology
- Consensus?
- Smart contract?

Blockchain 101

Basic Block Structure

A Time-Ordered Chain

A Time-Ordered Chain Immutable

Bitcoin Structure

Characteristics of Blockchain Ledger

Immutable

- Cannot modify the stored blocks
- Self protected

Perfect ledger structure

- Ledger of timestamped transactions
- Ledger of sequential transactions

Control point

- Addition of a new block to the chain
- Who is the authority?
 - The public, i.e. permissionless
 - · Set of trusted entities, i.e. permissioned

Some Advantages

- Integrity
 - Digital signature offers the same feature
- Non tampering
 - Linked chain
 - Distributed block chain
- Chronological registration
- Distributed
- Undeniability and transparency

Some Disadvantages

- Size of the ledger
 - linear increase with size O(n)
- Latency in transaction validation
 - Especially if permissionless distributed block chain
 - Bitcoin has a 50 mn latency
- Transparency
 - When confidentiality is needed

Mythology

Some Remarks

- Block chain
 - Ledger of chronological transactions
 - Verification by navigating the list
 - Difficult to fool
- Bitcoin introduces some complexity
 - ANY BODY should be allowed to write to the chain block
 - No centralized power
- This complexity may not be needed in all cases

Some Misconceptions

- Blockchain ≠ Bitcoin or cryptocurrency
- Blockchain does not need to have distributed permissionless consensus
 - Cryptocurrency uses public distributed consensus
 - Land registry does not use public validation
- Blockchain does not need to be public
- Blockchain does not need mining
 - Proof of Work is only needed for permissionless blockchain
- Blockchain is not necessary slow and with latency
 - Bitcoin handles 7 transactions per second
 - Permissioned blockchains can be faster.

Consensus?

Problem

TWO PROBLEMS:

- How is a transaction validated?
- How to synchronize the distributed ledgers?

Four Different Models

- Proof of Work
- Proof of Stack
- Byzantine Fault Tolerance
- Federated Byzantine Agreement

Proof of Work

- Solve the equation
 - *Target* is defined by Authority
 - Hash = SHA-256
- Difficult to solve
 - Brute force calculation only
- Easy to verify
- Challenge adjusts the average time to solve the equation
 - Number of miners
 - Total calculation power

 $Target \geq Hash(B_i|x)$

Proof of Work

Why does it work?

- Computationally costly to validate
- Reward the validators
- The likelihood that an attacker controls large chunk of the validators is small
 - Mining pools?

Pros

Permissionless system

Cons

- Lot of wasted resources
 - Power consumption of Ireland!
- Latency
- 51% attack
- · Large network of miners needed

Nakamoto, Satoshi. "Bitcoin: A Peer-to-Peer Electronic Cash System," 2008. http://www.cryptovest.co.uk/resources/Bitcoin%20paper%20Original.pdf.

Proof of Stake

- Next block generator is polled deterministically with a function of its wealth (i.e., stake)
- If you own n% of the coins, you may expect to mint n% of the blocks
- Examples; PPCoin, Ethereum...
 - Coin age = amount x holding period
 - Bid coin ages

```
Pr_{gen}(Alice) = f(Wealth(Alice))
```

Proof of Stake

Why does it work?

• the more you own of the system, the more you are expected to defend it

Pros

- Permissionless system
- Less consuming than PoW

Cons

- Weaker trust model
- Nothing at Stake attack
- No established formally proven protocol
 - No strong theory
- Latency

King, Sunny, and Scott Nadal. "PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake," August 19, 2012. https://peercoin.net/assets/paper/peercoin-paper.pdf.

Byzantine Fault

- Byzantine Fault = any failure of the system
 - Involuntarily such as a crash
 - Voluntarily such as a malicious behavior
- Byzantine fault tolerant system survives in case of Byzantine fault
 - *n* nodes
 - *f* ill-behaving nodes
 - *n-f* well-behaving nodes
 - Optimal n=3*f*+1

Practical Byzantine Fault Tolerance (PBFT)

Why does it work?

Built to be resilient up to a given level

Pros

- Simple and robust
- Well adapted to known set of trusted entities
- Trust is not linked to resources

Cons

- Not flexible
 - Pre-established list of participants
- Sybil attack
- All entities have the same trust level

Castro, Miguel, and Barbara Liskov. "Practical Byzantine Fault Tolerance." In *Proceedings of the Third Symposium on Operating Systems Design and Implementation*. New Orleans, USA: USENIX Association, 1999. https://www.usenix.org/conference/osdi-99/practical-byzantine-fault-tolerance

Federated Byzantine Agreement (FBA)

- A quorum slice for node v is a set of nodes sufficient for v to decide that v decides to agree
- A quorum is a set of nodes necessary to reach an agreement
 - In PBFT, any 2f + 1 nodes form a quorum
- A FBA system can guarantee agreement if and only if any of 2 quorums share a node
- A two-step validation process
 - Commitment ballot
 - Confirmation phase

Federated Byzantine Agreement (FBA)

• Why does it work?

- Formally proved
- Distributed Byzantine decision

Pros

- Open membership
- Each node decides who it trusts
- Low latency

Cons

- Need to reach quorum intersection
- Complex negotiation protocol

Smart Contracts?

Smart Contract

- A piece of software that is executed once a transaction is validated
- Some characteristics
 - Protected in integrity by the blockchain
 - Interpreted language with rather rich expressivity
- Announced to be THE solution
 - It is not simple in real world scenario

Theoretical Use Case: Managing All Contracts by a Blockchain

NLP: Natural Language processing

Use Case: What Could Go Wrong?

Hard Fork as a Remediation?

- Ethereum and DAO
 - Hard fork on 17th July 2016 to recover the \$40M theft from DAO
- Undermines immutability
- Who decides to fork?

Conclusion

Conclusion

- Blockchain is a promising technology
- Blockchain is larger than Bitcoin or Ethereum
- Practical Federated Byzantine Agreement may be a more suitable consensus system for the M&E industry
 - At least for many scenarios
- Smart contracts may need some maturity
 - Tools for formal proof and test
 - Security model

Conclusion: What Next?

- Better understand the technology
- Identify M&E problems that blockchain may solve
 - Immutability
 - Distributed
- Design some heuristics to decide when to use blockchain
- Experiment

Thank you for your attention! Merci

Any questions?

